Package: mcrPioda 1.3.3

mcrPioda: Method Comparison Regression - fork for M- and MM-Deming

Regression methods to quantify the relation between two measurement methods are provided by this package. In particular it addresses regression problems with errors in both variables and without repeated measurements. It implements the CLSI recommendations (see J. A. Budd et al. (2018, <https://clsi.org/standards/products/method-evaluation/documents/ep09/>) for analytical method comparison and bias estimation using patient samples. Furthermore, algorithms for Theil-Sen and equivariant Passing-Bablok estimators are implemented, see F. Dufey (2020, <doi:10.1515/ijb-2019-0157>) and J. Raymaekers and F. Dufey (2022, <arxiv:2202:08060>). Further the robust M-Deming and MM-Deming (experimental) are available, see G. Pioda (2021, <arxiv:2105:04628>). A comprehensive overview over the implemented methods and references can be found in the manual pages "mcr-package" and "mcreg".

Authors:Sergej Potapov [aut, cre], Fabian Model [aut], Andre Schuetzenmeister [aut], Ekaterina Manuilova [aut], Florian Dufey [aut], Jakob Raymaekers [aut], Giorgio Pioda [aut] Venkatraman E. Seshan [ctb], Roche [cph, fnd]

mcrPioda_1.3.3.tar.gz
mcrPioda_1.3.3.zip(r-4.5)mcrPioda_1.3.3.zip(r-4.4)mcrPioda_1.3.3.zip(r-4.3)
mcrPioda_1.3.3.tgz(r-4.4-x86_64)mcrPioda_1.3.3.tgz(r-4.4-arm64)mcrPioda_1.3.3.tgz(r-4.3-x86_64)mcrPioda_1.3.3.tgz(r-4.3-arm64)
mcrPioda_1.3.3.tar.gz(r-4.5-noble)mcrPioda_1.3.3.tar.gz(r-4.4-noble)
mcrPioda_1.3.3.tgz(r-4.4-emscripten)mcrPioda_1.3.3.tgz(r-4.3-emscripten)
mcrPioda.pdf |mcrPioda.html
mcrPioda/json (API)

# Install 'mcrPioda' in R:
install.packages('mcrPioda', repos = c('https://piodag.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/piodag/mcrpioda/issues

Uses libs:
  • fortran– Runtime library for GNU Fortran applications
Datasets:
  • creatinine - Comparison of blood and serum creatinine measurement

On CRAN:

3.18 score 1 stars 4 scripts 140 downloads 63 exports 81 dependencies

Last updated 1 months agofrom:e2083d1732. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 23 2024
R-4.5-win-x86_64NOTEOct 23 2024
R-4.5-linux-x86_64NOTEOct 23 2024
R-4.4-win-x86_64NOTEOct 23 2024
R-4.4-mac-x86_64NOTEOct 23 2024
R-4.4-mac-aarch64NOTEOct 23 2024
R-4.3-win-x86_64NOTEOct 23 2024
R-4.3-mac-x86_64NOTEOct 23 2024
R-4.3-mac-aarch64NOTEOct 23 2024

Exports:calcBiascalcCUSUMcalcResponsecoefcompareFitgetCoefficientsgetDatagetErrorRatiogetFittedgetRegmethodgetResidualsgetRJIFgetWeightsincludeLegendmcregMCResult.calcBiasMCResult.calcCUSUMMCResult.calcResponseMCResult.getCoefficientsMCResult.getDataMCResult.getErrorRatioMCResult.getFittedMCResult.getRegmethodMCResult.getResidualsMCResult.getWeightsMCResult.initializeMCResult.plotMCResult.plotBiasMCResult.plotDifferenceMCResult.plotResidualsMCResult.printSummaryMCResultAnalytical.calcResponseMCResultAnalytical.initializeMCResultAnalytical.printSummaryMCResultBCa.bootstrapSummaryMCResultBCa.calcResponseMCResultBCa.initializeMCResultBCa.plotBootstrapCoefficientsMCResultBCa.plotBootstrapTMCResultBCa.plotBoxEllipsesMCResultBCa.printSummaryMCResultJackknife.calcResponseMCResultJackknife.getJackknifeInterceptMCResultJackknife.getJackknifeSlopeMCResultJackknife.getJackknifeStatisticsMCResultJackknife.getRJIFMCResultJackknife.initializeMCResultJackknife.plotwithRJIFMCResultJackknife.printSummaryMCResultResampling.bootstrapSummaryMCResultResampling.calcResponseMCResultResampling.initializeMCResultResampling.plotBootstrapCoefficientsMCResultResampling.plotBootstrapTMCResultResampling.plotBoxEllipsesMCResultResampling.printSummaryplotplotBiasplotDifferenceplotResidualsplotwithRJIFprintSummarysummary

Dependencies:askpassbase64encbslibcachemclicolorspacecpp11crosstalkcurldata.tableDEoptimRdigestdplyrevaluatefansifarverfastmapfontawesomefsgenericsggplot2gluegtablehighrhtmltoolshtmlwidgetshttrisobandjquerylibjsonlitekernlabknitrlabelinglaterlatticelazyevallifecyclemagrittrMASSMatrixmemoisemgcvmimemixtoolsmunsellmvtnormnlmeopensslpcaPPpillarpkgconfigplotlypromisespurrrR6rappdirsRColorBrewerRcppRcppArmadillorlangrmarkdownrobslopesrobustbaserrcovsassscalessegmentedstringistringrsurvivalsystibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml

Readme and manuals

Help Manual

Help pageTopics
Method Comparison Regressionmcr-package mcr
Calculate difference between two numeric vectors that gives exactly zero for very small relative differences.calcDiff
Graphical Comparison of Regression Parameters and Associated Confidence IntervalscompareFit
Comparison of blood and serum creatinine measurementcreatinine
Include LegendincludeLegend
Analytical Confidence Intervalmc.analytical.ci
Resampling estimation of regression parameters and standard errors.mc.bootstrap
Bias Corrected and Accelerated Resampling Confidence Intervalmc.calc.bca
Quantile Calculation for BCamc.calc.quant
Quantile Method for Calculation of Resampling Confidence Intervalsmc.calc.quantile
Student Method for Calculation of Resampling Confidence Intervalsmc.calc.Student
Bootstrap-t Method for Calculation of Resampling Confidence Intervalsmc.calc.tboot
Calculate Matrix of All Pair-wise Slope Anglesmc.calcAngleMat
Calculate Matrix of All Pair-wise Slope Anglesmc.calcAngleMat.R
Jackknife Confidence Intervalmc.calcLinnetCI
Compute Resampling T-statistic.mc.calcTstar
Calculate Unweighted Deming Regression and Estimate Standard Errorsmc.deming
Calculate ordinary linear Regression and Estimate Standard Errorsmc.linreg
Returns Results of Calculations in Matrix Formmc.make.CIframe
Calculate M Weighted Deming Regressionmc.mdemingConstCV
Calculate MM Weighted Deming Regressionmc.mmdemingConstCV
Passing-Bablok Regressionmc.paba
Passing-Bablok Regression for Large Datasetsmc.paba.LargeData
Equivariant Passing-Bablok Regressionmc.PBequi
Calculate Weighted Deming Regressionmc.wdemingConstCV
Calculate Weighted Ordinary Linear Regression and Estimate Standard Errorsmc.wlinreg
Comparison of Two Measurement Methods Using Regression Analysismcreg
Class '"MCResult"'calcBias,MCResult-method calcCUSUM,MCResult-method calcResponse,MCResult-method coef,MCResult-method getCoefficients,MCResult-method getData,MCResult-method getErrorRatio,MCResult-method getFitted,MCResult-method getRegmethod,MCResult-method getResiduals,MCResult-method getWeights,MCResult-method MCResult-class plot,MCResult-method plotBias,MCResult-method plotDifference,MCResult-method plotResiduals,MCResult-method printSummary,MCResult-method summary,MCResult-method
Systematical Bias Between Reference Method and Test MethodcalcBias MCResult.calcBias
Calculate CUSUM Statistics According to Passing & Bablok (1983)calcCUSUM MCResult.calcCUSUM
Calculate Response with Confidence Interval.calcResponse MCResult.calcResponse
Get Regression Coefficientscoef getCoefficients MCResult.getCoefficients
Get DatagetData MCResult.getData
Get Error RatiogetErrorRatio MCResult.getErrorRatio
Get Fitted Values.getFitted MCResult.getFitted
Get Regression MethodgetRegmethod MCResult.getRegmethod
Get Regression ResidualsgetResiduals MCResult.getResiduals
Get Weights of Data PointsgetWeights MCResult.getWeights
MCResult Object InitializationMCResult.initialize
Scatter Plot Method X vs. Method YMCResult.plot plot plot.mcr
Plot Estimated Systematical Bias with Confidence BoundsMCResult.plotBias plotBias
Bland-Altman PlotMCResult.plotDifference plotDifference
Plot Residuals of an MCResult ObjectMCResult.plotResiduals plotResiduals
Print Summary of a Regression AnalysisMCResult.printSummary printSummary summary
Class '"MCResultAnalytical"'calcResponse,MCResultAnalytical-method MCResultAnalytical-class printSummary,MCResultAnalytical-method summary,MCResultAnalytical-method
Caluculate ResponseMCResultAnalytical.calcResponse
Initialize Method for 'MCResultAnalytical' Objects.MCResultAnalytical.initialize
Print Regression-Analysis Summary for Objects of class 'MCResultAnalytical'.MCResultAnalytical.printSummary
Class '"MCResultBCa"'calcResponse,MCResultBCa-method MCResultBCa-class printSummary,MCResultBCa-method summary,MCResultBCa-method
Compute Bootstrap-Summary for 'MCResultBCa' Objects.MCResultBCa.bootstrapSummary
Caluculate ResponseMCResultBCa.calcResponse
Initialize Method for 'MCResultBCa' Objects.MCResultBCa.initialize
Plot distriblution of bootstrap coefficientsMCResultBCa.plotBootstrapCoefficients
Plot distriblution of bootstrap pivot TMCResultBCa.plotBootstrapT
Plot distriblution of bootstrap coefficients and Box and Ellipses for the hypotesis testingMCResultBCa.plotBoxEllipses
Print Regression-Analysis Summary for Objects of class 'MCResultBCa'.MCResultBCa.printSummary
Class '"MCResultJackknife"'calcResponse,MCResultJackknife-method getRJIF,MCResultJackknife-method MCResultJackknife-class plotwithRJIF,MCResultJackknife-method printSummary,MCResultJackknife-method summary,MCResultJackknife-method
Caluculate ResponseMCResultJackknife.calcResponse
Get-Method for Jackknife-Intercept Value.MCResultJackknife.getJackknifeIntercept
Get-Method for Jackknife-Slope Value.MCResultJackknife.getJackknifeSlope
Jackknife StatisticsMCResultJackknife.getJackknifeStatistics
Relative Jackknife Influence FunctiongetRJIF MCResultJackknife.getRJIF
Initialize Method for 'MCResultJackknife' Objects.MCResultJackknife.initialize
Plotting the Relative Jackknife Influence FunctionMCResultJackknife.plotwithRJIF plotwithRJIF
Print Regression-Analysis Summary for Objects of class 'MCResultJackknife'.MCResultJackknife.printSummary
Class '"MCResultResampling"'calcResponse,MCResultResampling-method MCResultResampling-class printSummary,MCResultResampling-method summary,MCResultResampling-method
Compute Bootstrap-Summary for 'MCResultResampling' Objects.MCResultResampling.bootstrapSummary
Caluculate ResponseMCResultResampling.calcResponse
Initialize Method for 'MCResultAnalytical' Objects.MCResultResampling.initialize
Plot distriblution of bootstrap coefficientsMCResultResampling.plotBootstrapCoefficients
Plot distriblution of bootstrap pivot TMCResultResampling.plotBootstrapT
Plot distriblution of bootstrap coefficients with robust covariance ellipses and a CI boxMCResultResampling.plotBoxEllipses
Print Regression-Analysis Summary for Objects of class 'MCResultResampling'.MCResultResampling.printSummary
MCResult Object Constructor with Matrix in Wide Format as InputnewMCResult
MCResultAnalytical object constructor with matrix in wide format as input.newMCResultAnalytical
MCResultBCa object constructor with matrix in wide format as input.newMCResultBCa
MCResultJackknife Object Constructor with Matrix in Wide Format as InputnewMCResultJackknife
MCResultResampling object constructor with matrix in wide format as input.newMCResultResampling